Space Physics at Princeton

Welcome to Space Physics at Princeton

The Space Physics group in the Department of Astrophysical Sciences at Princeton University carries out a broad range of research spanning from the Sun and solar corona, through the solar wind and terrestrial and planetary magnetospheres, and encompassing the global heliosphere and its interaction with the local interstellar medium. We are the lead institution for numerous NASA Heliophysics missions and instruments that Prof. David J. McComas serves as the Principle Investigator for:

Interstellar Mapping and Acceleration Probe (IMAP) mission – just selected for development and launching in 2024 to explore the details of particle acceleration and the Sun’s interaction with the local interstellar medium;

Parker Solar Probe (PSP), Integrated Science investigation of the Sun (ISʘIS) instrument suite – launched 8/12/2018 to measure energetic particles as close in as 9 solar radii from the Sun’s surface;

Interstellar Boundary Explorer (IBEX) mission – launched in 2008 and still exploring the boundaries of our heliosphere and its interaction with the local interstellar medium;

New Horizons, Solar Wind Around Pluto (SWAP) instrument – launched in 2006, measured the plasma environments of Pluto and the jovian magnetosphere and continues to make unprecedented observations of interstellar pickup ions;

Advanced Composition Explorer (ACE), Solar Wind Electron Proton Alpha Monitor (SWEPAM) instrument – launched in 1997 and still providing solar wind data from the Sun-Earth Lagrangian point (L1);

Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission – returned the first stereo imaging of the Earth’s dynamic magnetosphere from 2008-2017;

Ulysses, Solar Wind Observations Over the Poles of the Sun (SWOOPS) instrument – discovered the three-dimensional structure of the solar wind from the first and only mission to fly over the poles of the Sun (operational from 1990 to 2009).



Research News

Wednesday, Sep 23, 2020

We analyze precipitating electron fluxes connected to 18 crossings of Io's footprint tail aurora, over altitudes of 0.15 to 1.1 Jovian radii (RJ...

Monday, Jun 15, 2020

NASA’s Interstellar Boundary Explorer (IBEX) mission has operated in space for a full solar activity cycle (Solar Cycle 24), and IBEX observations...

Tuesday, Jun 2, 2020

Now over seven years into its journey beyond the heliopause, Voyager 1 continues to return unprecedented observations of energetic particles,...

Thursday, Apr 30, 2020

Our heliosphere is formed by the interaction between the dynamic solar wind (SW) and partially ionized, local interstellar medium.

Wednesday, Mar 4, 2020

The Interstellar Boundary Explorer (IBEX) observes the "ribbon" of enhanced energetic neutral atom (ENA) fluxes from the outer heliosphere.

Thursday, Feb 13, 2020

The University Space Physics group and David J.

Wednesday, Feb 12, 2020

Since the discovery of the Moon’s asymmetric ejecta cloud, the origin of its sunward-canted density enhancement has not been well understood.

Tuesday, Feb 11, 2020

Integrating simultaneous in situ measurements of magnetic field fluctuations, precipitating electrons, and ultraviolet auroral emissions, we find...

Monday, Feb 3, 2020

The Parker Solar Probe (PSP) spacecraft has flown into the densest, previously unexplored, innermost region of our solar system’s zodiacal cloud...

Wednesday, Jan 29, 2020

A Princeton-led mission to study the interaction of the solar wind with the ancient cast-off winds of other stars, and the fundamental process of...

David J. McComas, Ph.D.

Nathan Schwadron, Ph.D.