Publication: Entropy Defect in Thermodynamics

June 5, 2023

New paper on the axiomatic generalization of thermodynamics for systems with correlations among their constituents, residing either in stationary or nonstationary states.

Analytically, the paper describes the physical foundations of the newly discovered “entropy defect” as a basic concept of thermodynamics. The entropy defect quantifies the change in entropy caused by the order induced in a system through the additional correlations among its constituents when two or more subsystems are assembled. This defect is closely analogous to the mass defect that arises when nuclear particle systems are assembled. The entropy defect determines how the entropy of the system compares to its constituent’s entropies and stands on three fundamental properties: each constituent’s entropy must be (i) separable, (ii) symmetric, and (iii) bounded. We show that these properties provide a solid foundation for the entropy defect and for generalizing thermodynamics to describe systems residing out of the classical thermal equilibrium, both in stationary and nonstationary states. In stationary states, the consequent thermodynamics generalizes the classical framework, which was based on the Boltzmann–Gibbs entropy and Maxwell–Boltzmann canonical distribution of particle velocities, into the respective entropy and canonical distribution associated with kappa distributions. In nonstationary states, the entropy defect similarly acts as a negative feedback, or reduction of the increase of entropy, preventing its unbounded growth toward infinity.